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Abstract

Wound age estimation is one of the most challenging and indispensable issues for forensic pathologists. Although many methods based on
physical findings and biochemical tests can be used to estimate wound age, an objective and reliable method for inferring the time interval
after injury remains difficult. In the present study, endogenous metabolites of contused skeletal muscle were investigated to estimate the
time interval after injury. Animal model of skeletal muscle injury was established using Sprague–Dawley rat, and the contused muscles were
sampled at 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h postcontusion (n = 9). Then, the samples were analysed using ultraperformance liquid
chromatography coupled with high-resolution mass spectrometry. A total of 43 differential metabolites in contused muscle were determined
by metabolomics method. They were applied to construct a two-level tandem prediction model for wound age estimation based on multilayer
perceptron algorithm. As a result, all muscle samples were eventually divided into the following subgroups: 4, 8, 12, 16–20, 24–32, 36–40, and
44–48 h. The tandem model exhibited a robust performance and achieved a prediction accuracy of 92.6%, which was much higher than that of
the single model. In summary, the multilayer perceptron–multilayer perceptron tandem machine-learning model based on metabolomics data
can be used as a novel strategy for wound age estimation in future forensic casework.

Key Points

• The changes of metabolite profile were correlated with the time interval after injury in contused skeletal muscle.
• A panel of 43 endogenous metabolites screened by ultraperformance liquid chromatography coupled with high-resolution mass spectrometry

could distinguish the wound ages.
• The multilayer perceptron (MLP) algorithm exhibited a robust performance in wound age estimation using metabolites.
• The combination of matabolomics and MLP–MLP tandem model could improve the accuracy of inferring the time interval after injury.
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Introduction

In forensic practice, suspect identification has always been
a challenge in criminal investigations because of inadequate
evidence due to the suspect escaping, cleaning of the scene,
or a crime involving multiple people [1, 2]. Violent crimes
often occur with physical wounds, and the wound age can
indicate the time of the harmful behaviour from the perpe-
trator in the actual situation. Thus, connecting the time point
of physical injury to that of harmful behaviour is considered
to be important for suspect identification. Notably, wound
age estimation is a crucial step in forensic practice for suspect
identification.

In preliminary studies of wound age estimation, only
the signs on the body were used by forensic specialists to

infer the time interval after injury. Due to the continuous
development of detection techniques and methods, increasing
evidence has shown that a variety of biological substances
such as mRNA, micro-RNA, and proteins can be candidate
markers for determining wound age [3–6]. However, no
marker has been proven to be efficient and reliable to
date.

In recent years, based on the theory that biological processes
after tissue injury are comprehensive and complicated, a
consensus was made that multiple biomarkers should be
applied to estimate wound age [1, 7–11]. Omics technology
has provided an approach to study these biological processes
from a holistic view. Kondo [12] reviewed several markers
for determining skin wound age in forensic medicine and
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predicted that proteins would be useful for establishing
wound vitality or age.

The analysis of low-molecular-weight metabolites, also
known as metabolomics, is a systematic study of the metabolic
changes in all endogenous small molecules in response to
stimuli [13]. Metabolomics may reflect function more directly
than the analyses of proteins or genes, which have been
successfully applied to several areas of medical research.
Current advances in technology allow for the simultaneous
characterization of thousands of metabolites. Molecular
changes reflecting metabolic changes in mice of different ages
and contused human skeletal muscle have been measured
in the previous studies, thereby providing the basis for
future detailed metabolomics investigations of injured muscle
[14, 15].

With the significant growth in data volume, the difficulty of
data explosion originated from metabolomics should also be
concerned. Fortunately, due to advances in machine learning,
building an intelligent model of the distribution of class
labels in terms of predictor features is possible. The resulting
classifier is then used to assign class labels to test instances
for which predictor feature values are known but class label
values are unknown. Accordingly, in forensic medicine field,
machine-learning algorithms have also been applied to deter-
mine the cause of death, infer skeletal age, and estimate the
postmortem interval with vitreous humour, drowning fluid,
limb long bone, and other biological specimens [16–21].
Despite numerous advances in methodology in the past years,
forensic medicine research scientists continue to rely heavily
on parametric models (e.g. logistic regression) for prediction.
Often, only a single model is specified to generate predictions
and, in some multiclassification tasks, the performance of a
single model is always unsatisfactory. As we know, the combi-
nation of multiple machine-learning models into ensembles to
decrease the forecast errors in the forensic medicine field has
not been reported in the previous studies.

In the present study, ultraperformance liquid chromatogra-
phy coupled with high-resolution mass spectrometry (UPLC–
HRMS) was used to investigate metabolite changes in con-
tused muscles over time, and a tandem machine-learning
algorithm was applied to narrow the prediction time window
after skeletal muscle contusion based on the levels of different
metabolites.

Materials and methods

Animal experiments and sample preparation

All procedures performed conformed to the Guide for the
Care and Use of Laboratory Animals (https://nap.national
academies.org/catalog/12910/guide-for-the-care-and-use-of-
laboratory-animals-eighth) and were approved by the
Institutional Animal Care and Use Committee of Shanxi
Medical University, China. A total of 117 male Sprague–
Dawley rats (7–8 weeks old; weight, 200–250 g) were
purchased from the Animal Center of Shanxi Medical
University. This study was also approved by the Animal Ethics
Committee of Shanxi Medical University (2016LL151). All
laboratory animals were housed in cages and fed rat chow
and water under a 12-h light/12-h dark cycle and relative
humidity of 40%–60% at 22◦C–24◦C. Then, the 117 rats
were randomly divided into a control group and 4-, 8-, 12-,
16-, 20-, 24-, 28-, 32-, 36-, 40-, 44-, and 48-h contusion
groups for the experiments (n = 9).

The animal model of skeletal muscle contusion has been
described previously [22]. Briefly, the rats were anesthetized
with pentobarbital sodium and then the hair on their right
posterior limbs was removed using a depilatory agent. The
rats were placed on a test stand in the supine position. Subse-
quently, a 100-g counterpoise was dropped from a height of
200 cm through a clear lucite guide tube onto the quadriceps
femoris muscle of the right posterior limb. The rats that
received the injury were transferred to another clean cage
with food and water and were sacrificed at 12 contused time
point (4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h)
postcontusion with a lethal dose of pentobarbital sodium
(350 mg/kg body weight, intraperitoneal injection). A 200-mg
skeletal muscle specimen was dissected from the wound site.
The specimens in the control group were harvested from the
same site after anesthetization with an overdose of pentobar-
bital sodium. All muscle samples were frozen immediately in
liquid nitrogen and were stored at −80◦C until metabolomics
analysis.

Finally, another 13 rats representing various wound time
points were selected as the test dataset to assess the perfor-
mance of the final tandem prediction model. The muscle spec-
imen preparation and metabolomics analytical procedures
were the same as for the 117 samples mentioned above.

Metabolite extraction

Muscle samples were prepared by first thawing the specimens
at 4◦C before extracting 200-mg muscle samples. Each sample
was homogenized in an 800-μL aliquot of acetonitrile using
the ball-milling method, then centrifuged at 12 000 rpm for
20 min at 4◦C. Next, 600 μL of supernatant were transferred
to and dried in a refrigerated centrifugal drier. Finally, the
dried residue was redissolved with 200 μL of acetonitrile/wa-
ter (4:1), and the supernatant was filtered using a 0.22-μm
membrane and was then injected into the UPLC system.
Pooled quality control (QC) samples were prepared by mixing
equal amounts (10 μL) of the supernatant after centrifugation
and were run every 10 injections to evaluate the system
stability and performance.

UPLC–HRMS analysis

An ultrahigh performance liquid chromatography system
(Thermo Fisher Scientific, Waltham, MA, USA) coupled online
“via” a heated electrospray ionization source to a mass
spectrometer was employed for nontargeted metabolomics
profiling. Separation was achieved using an Acquity HSS T3
column (1.8 μm, 2.1 × 10 mm; Waters, Milford, MA, USA)
with a 5-μL injection volume. The temperature of the chro-
matographic column was maintained at 40◦C and that of the
sample manager was maintained at 4◦C. Gradient elution was
performed using 0.1% formic acid in water (A) and acetoni-
trile (B) as the mobile phase. The flow rate was 0.3 mL/min,
with the elution gradient as follows: 0–8 min, 2% B;
8–13 min, 50% B; 13–15 min, 85% B; 15–17 min, 98% B;
17–17.5 min, 2% B; and re-equilibration until 20.5 min. The
acquisition of mass spectra was performed using a Q Exactive
Orbitrap high-resolution mass spectrometer (Thermo Fisher
Scientific) operated in positive and negative electrospray ion-
ization modes with spray voltages of 3.5 and 3.0 kV, respec-
tively. The capillary temperature was set at 350◦C and the
probe heating temperature was set at 300◦C with the sheath
gas set at 30 arbitrary units. The mass scan range was from
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80 to 1 200 Da. The scanning mode was full scan/dd-MS2,
and the mass resolution parameter for the full scan mode
was 35 000 and 17 500 full width at half maximum (FWHM)
for tandem mass spectrometry (MS/MS). The parameters of
normalized collision energy were set to 12.5, 25, and 37.5 eV.

Data processing and metabolite identification

Raw data (.raw) generated from the UPLC-HRMS analy-
sis were initially processed using Compound Discoverer 3.0
(Thermo Fisher Scientific), including peak integration, nonlin-
ear retention time alignment, filtering, and matching. Metabo-
lite identification was based on accurately matching mass and
mass fragmentation pattern spectra against the MS/MS spec-
tra of metabolites available on the online databases, including
mzCloud database (https://www.mzcloud.org); ChemSpider
Web services (https://www.chemspider.com) and the Human
Metabolome Database (HMDB, https://hmdb.ca/). The gen-
erated data matrix included information on the metabolite
name, retention time, exact mass-to-charge ratio, and peak
area. All data were imported into Excel (Microsoft, Redmond,
WA, USA) for normalization of the peak areas.

Metabolic profiling analysis

Pattern recognition was performed using SIMCA-P software
(version 14.1; Umetrics AB, Umea, Sweden) to compare
differences in the metabolic profile between the control
and contused muscle groups. Principal component analysis
(PCA) was used to observe outliers and the stability of
the analytical system, and orthogonal partial least-squares
discriminant analysis (OPLS-DA) was applied to discriminate
the predicted wound age groups, similar to our previous
study [4]. The potential biomarkers for differentiating the
control group from the different wound age groups were
selected based on their variable importance in projection (VIP)
values from OPLS-DA and false discovery rate (FDR)-adjusted
P-value. Heatmap and cluster analyses for the metabolites
were performed using TBtool software (https://www.re
searchgate.net/deref/https%3A%2F%2Fgithub.com%2FCJ-
Chen%2FTBtools%2Freleases). The metabolites significantly
different in injured skeletal muscle were analysed using the
pathway topology search tool in MetaboAnalyst 5.0 (https://
www.researchgate.net/deref/https%3A%2F%2Fwww.meta
boanalyst.ca).

Machine-learning model development and

evaluation

Before machine-learning model training, the Z-score stan-
dardization algorithm was used to preprocess the dataset to
eliminate errors that originated from different dimensions
between variables. The partial least-squares-based dimension
reduction (PLS-DR) algorithm was applied to reduce the
multidimensional dataset into a 2D dataset, which facilitates
data visualization. This data conversion can overcome the
high-dimension attribute of the metabolomics dataset and can
extract as much helpful information from the data as possible.

Machine-learning algorithms were applied to learn data-
distribution features from known data and predict anony-
mous data. Four machine-learning algorithms, logistic regres-
sion (LR), support vector machine (SVM), random forest (RF),
and multilayer perceptron (MLP), were used in the present
study. These machine-learning algorithms were mainly run
on the Python 3.7 open-source platform with the scikit-learn

module. In addition, the critical parameters of the four models
were set as follows. Briefly, the LR solver was set as “lbfgs”,
and the C-value that controls the regularization of the SVM
model was set as 1.5 to improve fitting ability. Similarly, the
n_estimators parameter of the RF model was set as 128, and
the hidden_layer_sizes, solver, learning_rate, and max_iter
parameters of the MLP model were set as (32, 32), “adam”,
“adaptive”, and 3 000, respectively.

A crossvalidation algorithm was used to evaluate the perfor-
mance of the four mathematic models in which the dataset was
randomly divided into 70% training data and 30% validation
data. Accuracy metrics were used to evaluate the performance
of these models.

A tandem machine-learning model based on metabolomics
data was established to predict wound age. First, contused
muscle samples of 12 different ages (4, 8, 12, 16, 20, 24, 28, 32,
36, 40, 44, and 48 h) were divided into several groups based
on OPLS-DA pattern recognition, and differential metabolites
in the contused muscle were found based on their VIP value
and adjusted P-value. Then, the metabolites from contused
muscles were analysed to establish machine-learning models
for predicting the wound age period. The best model with the
highest performance among the four machine-learning algo-
rithms was selected as the first-level prediction model. Second,
the first-level groups were subdivided based on the OPLS-DA
model outcomes, and the second-level prediction models were
constructed based on their differential metabolites. Finally,
we wrote code using Python software to link the two-level
prediction models into a tandem model, which would be used
for the prediction of new contused samples.

Another 13 rats were used to evaluate the tandem model
performance for real-life application, and the extraction of
contused muscle specimens and metabolomics analysis were
performed as described above.

Finally, the accuracies of internal validation and Fisher dis-
criminant analysis were used to evaluate the performance of
the tandem model, which was compared with the performance
of single machine learning models (LR, SVM, RF, and MLP,
respectively).

Results

Metabolomics analysis and biomarker candidates

in contused skeletal muscle

A total of 16 785 chromatographic peaks (features) were
obtained from UPLC–HRMS metabolomics data, which
were applied for the multivariate analysis. The PCA score
plot showed a close clustering of QC samples, indicating
that satisfactory stability and reproducibility throughout the
experiment protocol (Figure 1A). In addition, the OPLS-DA
model in Figure 1B shows a complete separation of control
group and contused skeletal muscle groups. Meanwhile, all
contused skeletal samples from 12 of time intervals in the
OPLS-DA model could be classified as three groups: Group I
(4–12 h), Group II (16–32 h), and Group III (36–48 h). The
model parameters (R2Y = 0.809, Q2 = 0.427, P-value of CV
ANOVA < 0.001) and model validation (200 permutations,
Figure 1C) demonstrated a good capacity for fitting and
prediction.

To identify biomarkers associated with injury, the features
with VIP > 1 in the OPLS-DA model and FDR-adjusted
P < 0.05 were considered to be promising candidates for
biomarkers. Compared with controls, there were 2 676
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Figure 1. First-level classification of time intervals based on orthogonal partial least-squares discriminant analysis (OPLS-DA) pattern recognition and
significant feature screening; (A) Principal component analysis (PCA) plot for quality control (QC) samples; (B) OPLS-DA pattern recognition for the control
group and contused muscle groups; (C) permutation test for the OPLS-DA model to investigate whether this model was overfitted; (D) among 16 785
features, 3 920 significant features for the three contusion groups were identified.

differentially expressed features in Group I (4–12 h), 2 807
differentially expressed features in Group II (16–32 h), and
2 649 differentially expressed features in Group III (36–
48 h) (Figure 1D). As shown in Figure 1D, a total of 3 920
differential features in the three contused muscle groups were
attributed to a panel of 43 endogenous metabolites (28 in
Group I, 32 in Group II, and 28 in Group III) based on
their accurately derived mass values, MS/MS spectra, and
the parameters illustrated in Table 1.

Furthermore, hierarchical cluster plots of the 43 metabolites
were constructed (Figure 2A), in which blue indicates a low
level and red indicates a high level, showing changes in the
levels of metabolites in skeletal muscle after injury. Signif-
icant differences were observed between the three wound
age periods (4–12 h, 16–32 h, and 36–48 h). Forty-three
differential metabolites were identified in the skeletal muscle
of injured rats, 40 of which were common to rat and human
(Table 1), based on HMDB comparison. Pathway analyses
for these 40 metabolites showed that 10 perturbed common
metabolic pathways in both species were obtained from the
pathway libraries of Rattus norvegicus (rat) and Homo sapi-
ens (human) using MetPA (Figure 2B and C), and they were

correlated with the metabolisms of lipid, amino acid, and
nucleotide.

Establishment of the first-level prediction model to

distinguish wounds of different ages

The first-level prediction model was constructed based on
the preliminary separation of time intervals using OPLS-
DA. Firstly, the PLS-DR algorithm was introduced to reduce
the dataset dimensions, and the 43D dataset was projected
onto two dimensions. Then, four prediction models based
on LR, SVM, RF, and MLP algorithms were established to
discriminate the samples obtained at 4–12 h (Group I), 16–
32 h (Group II), and 36–48 h (Group III). The validation accu-
racies of the crossvalidation were 87.8%, 84.8%, 81.8%, and
93.9% (Figure 3A) and the area under the curve values of the
receiver operating characteristic (ROC) curve were 0.88, 0.89,
0.90, and 0.91 for LR, SVM, RF, and MLP algorithms, respec-
tively (Figure 3B). The classification hyperplane and confu-
sion matrix plots are shown in Figure 3C–J, indicating the
separation of samples and the number of correctly judged and
misjudged samples in each model. According to the results, the
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Table 1. Detailed information of 43 differential metabolites found in contused muscle.

No. m/z Mass error
(ppm)

Name Formula Retention
time (min)

mzCloud
ID

HMDB ID

1 327.3135 −0.9 N,N-dimethylsphingosine C20H41NO2 22.302 4 434 HMDB0013645
2 453.2856 0.2 Glycerophospho-n-palmitoyl

ethanolamine
C21H44NO7P 16.403 2 955 NA

3 204.0899 0.2 DL-tryptophan C11H12N2O2 8.241 415 HMDB0013609
4 117.0789 −0.5 L-(+)-valine C5H11NO2 0.880 2 570 HMDB0000883
5 187.0633 0.0 Indoleacrylic acid C11H9NO2 8.240 449 HMDB0000734
6 125.0146 −0.2 Taurine C2H7NO3S 0.852 654 HMDB0000251
7 344.2355 1.0 Medroxyprogesterone C22H32O3 17.385 1 321 HMDB0001939
8 164.0474 0.2 4-Coumaric acid C9H8O3 1.086 539 HMDB0002035
9 181.0739 0.2 L-tyrosine C9H11NO3 1.078 2 255 HMDB0000158
10 320.2354 0.9 18-HETE C20H32O3 17.521 4 720 HMDB0006245
11 408.2882 1.5 Cholic acid C24H40O5 13.096 344 HMDB0000619
12 149.0511 0.1 L-(−)-methionine C5H11NO2S 1.080 1 544 HMDB0000696
13 296.2354 0.8 13S-hydroxyoctadecadienoic acid C18H32O3 16.744 9 778 HMDB0004667
14 244.0698 1.0 Uridine C9H12N2O6 1.853 1 408 HMDB0000296
15 278.2244 −0.7 α-Eleostearic acid C18H30O2 16.753 6 594 HMDB0248208
16 168.0283 −0.1 Uric acid C5H4N4O3 1.076 753 HMDB0000289
17 321.2666 −0.7 α-Linolenoyl ethanolamide C20H35NO2 17.587 4 417 HMDB0013624
18 378.2768 −0.6 2-Arachidonoylglycerol C23H38O4 20.076 4 740 HMDB0004666
19 131.0947 0.4 Leucine C6H13NO2 0.357 6 HMDB0000687
20 392.2933 1.5 3a,7a-dihydroxycholanoic acid C24H40O4 15.084 9 830 HMDB0000384
21 449.3145 0.9 Glycochenodeoxycholic acid C26H43NO5 13.513 9 839 HMDB0000637
22 272.2356 1.5 Juniperic acid C16H32O3 20.262 2 551 HMDB0006294
23 320.2354 0.9 15-HETE C20H32O3 17.069 8 581 HMDB0003876
24 112.0272 −0.6 Uracil C4H4N2O2 1.845 2 531 HMDB0000300
25 392.2933 −0.9 Deoxycholic acid C24H40O4 15.400 388 HMDB0000626
26 230.1518 0.1 Dodecanedioic acid C12H22O4 11.170 1 182 HMDB0000623
27 584.2630 −0.8 Bilirubin C33H36N4O6 25.613 334 HMDB0000054
28 302.2244 −0.5 Eicosapentaenoic acid C20H30O2 20.345 348 HMDB0001999
29 165.0790 0.1 DL-phenylalanine C9H11NO2 1.153 8 HMDB0250791
30 166.0630 0.0 Desaminotyrosine C9H10O3 9.922 183 HMDB0002199
31 312.2299 −0.6 9-HpODE C18H32O4 12.722 8 563 HMDB0242602
32 354.2412 1.6 (−)-Prostaglandin E1 C20H34O5 13.359 1 356 HMDB0001442
33 304.2400 −0.8 Arachidonic acid C20H32O2 17.734 2 742 HMDB0001043
34 286.2148 1.2 Hexadecanedioic acid C16H30O4 13.304 2 712 HMDB0000672
35 185.1052 0.1 Ecgonine C9H15NO3 9.746 2 066 HMDB0006548
36 328.2254 1.4 (11E,15Z)-9,10,13-

trihydroxyoctadeca-11,15-dienoic
acid

C18H32O5 11.572 1 416 NA

37 298.2506 −0.8 NP-011548 C18H34O3 19.620 6 496 NA
38 238.2295 −0.6 Muscone C16H30O 22.893 6 153 HMDB0034181
39 299.2821 −1.1 D-sphingosine C18H37NO2 15.563 418 HMDB0000252
40 159.0896 0.2 N-acetylvaline C7H13NO3 9.480 1 365 HMDB0011757
41 301.2979 −0.6 Sphinganine C18H39NO2 11.921 391 HMDB0000269
42 281.2718 −0.4 (9Z)-9-octadecenamide C18H35NO 24.440 530 HMDB0002117
43 176.0321 0.2 Vitamin C C6H8O6 11.161 325 HMDB0000044

NA: not available.

MLP model achieved a higher performance compared with
the LR, SVM, and RF models, and it was selected as the first-
level prediction model to discriminate wounds of different
ages.

Establishment of the second-level prediction

model for estimating wound age time interval

On the basis of the wound age, OPLS-DA was performed
to further subdivide the contused skeletal muscle samples
within above three groups. As illustrated in scatter plots
(Figure 4A–C), the muscle samples in Group I were divided
into three subgroups—4, 8, and 12 h; Group II samples
were divided into 16–20-h and 24–32-h subgroups; and
Group III samples were divided into 36–40-h and 44–48-h
subgroups. The parameters for these models (R2Y = 0.907,
0.852, and 0.945, Q2 = 0.458, 0.470, and 0.455, and

PCV-ANOVA = 0.00215979, 5.41912e−008, and 2.5132e−005,
respectively) and permutation test results (200 permutations,
Figure 4D–F) indicated that the OPLS-DA models performed
well and were not overfitted.

Based on these OPLS-DA models, differential metabolites
with VIP>1 and adjusted P-value<0.05 were screened again.
Ultimately, compared to the control group, 28 differential
metabolites were found in 4-, 8-, and 12-h groups, 35 metabo-
lites were found in 16–20- and 24–32-h groups, and 28
metabolites were found in 36–40- and 44–48-h groups. These
metabolites were the consistent in the above-listed 43 metabo-
lites identified by the first-level model (Table 1). The heatmaps
plotted in Figure 5A–C showed distinct differences among the
subgroups.

Four models, LR, SVM, RF, and MLP, were established to
predict second-level divisions of time intervals based on their
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Figure 2. Hierarchical cluster analysis and pathway analysis; (A) hierarchical cluster plot of a panel of 43 metabolites identified in the wound age groups;
view maps of the metabolic pathways in rat (B) and human (C); this figure displays all matched pathways as circles; the x-axis represents enriched
pathways, and the y -axis represents the impact pathways; the colour and size of each circle are based on its P-value and the pathway impact value,
respectively.

respective metabolite panel. Similar to the above method,
the PLS-DR algorithm was also applied for dimensional
reduction to project the dataset onto two dimensions before
model training. According to its accuracy level (Figure 5D–F),
the MLP algorithm exhibited the highest discriminatory
efficiency for second-level temporal division among the four
models after crossvalidation. The hyperplane plots of the MLP
model revealed consistent accuracy and classification results
(Figure 5G–I). The contused muscle samples can be divided
into seven subgroups (4, 8, 12, 16–20, 24–32, 36–40, and
44–48 h) by the second-level tandem model, indicating that
the time windows for wound age have a minimum interval of
4 h and a maximum interval of 12 h.

Establishment and validation of the tandem

prediction models

Based on the above results, the two-level MLP classification
model consisting of four MLP models was efficient at
estimating the wound ages of contused skeletal muscle
samples obtained from rats. For more convenient real-life
application, detailed Python code was written to concatenate
these first-level MLP model and second-level MLP models into
a tandem prediction model, with uploaded code in GitHub

repository (https://github.com/asdwe172009/tandem-machi
ne-learning-model-for-rats-skeletal-muscle-wound-age-esti
mation). In this section, data from the 108 samples (12
contused time point, n = 9) in the experiment were input into
a novel MLP–MLP tandem model to validate the internal
performance of the integrated tandem model. Consequently,
100 of 108 samples were correctly discriminated (Figure 6A),
demonstrating the robust performance of the tandem model.

To evaluate tandem model performance using the test
dataset, samples from another 13 rats collected at different
times after injury were designated out-of-bag data for a
double-blind experiment. The metabolomics experiment
and data preprocessing were entirely consistent with those
used for the training samples. Then, the test data were
input into the tandem machine-learning model for classifi-
cation. The workflow of the classification process is shown
in Figure 6B, which indicated the analysis workflow of
unknown samples in the tandem model. In this experiment
of external validation, eight of the 13 samples were correctly
discriminated.

To compare with the performance of single model and
tandem model, LR, SVM, RF, and MLP were used for
modelling, respectively. As shown in Figure 7A, the tandem
model achieved an accuracy of 92.6%, which was much
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https://github.com/asdwe172009/tandem-machine-learning-model-for-rats-skeletal-muscle-wound-age-estimation
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Figure 3. The assessment of the first-level prediction model; (A) the validation accuracies of the crossvalidation in logistic regression (LR), support vector
machine (SVM), random forest (RF), and multilayer perceptron (MLP); (B) receiver operator characteristic (ROC) curves and area under the curve values
of the four algorithms; classification hyperplane plots of the LR (C), SVM (D), RF (E), and MLP (F) algorithms; the blue area represents the data space of
the 4–12-h group, the white area represents the 16–32-h group, and the red area represents the 36–48-h group; round dots represent training samples,
triangles represent validation samples, and pentagrams represent misjudged samples; (G–J) confusion matrix of 4–12-, 16–32-, and 36–48-h groups in LR,
SVM, RF, and MLP algorithms, respectively.

Figure 4. Second-level division of time intervals based on orthogonal partial least-squares discriminant analysis (OPLS-DA) pattern recognition; OPLS-DA
plots indicating that discrimination between 4-, 8-, and 12-h samples (A); 16–20- and 24–32-h samples (B); and 36–40- and 44–48-h samples (C) was
possible; (D–F) permutation test results (200 times) for each model.

higher than all accuracy of the four single machine learning
models (59.3% for LR, 62.9% for SVM, 65.7% for RF,
and 69.4% for MLP). The scatter plot of predicting age

and actual wound age showed the prediction ability of each
model (Figure 7B–F). In Figure 7F, the most numerous points
gathered diagonally, which indicated that the MLP–MLP
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Figure 5. The assessment of the second-level prediction model; heatmaps representing average metabolite levels in 4-, 8-, and 12-h groups (A); 16–20-
and 24–32-h groups (B); and 40–44- and 44–48-h groups (C); the crossvalidation accuracies of the four models in 4-, 8-, and 12-h groups (D); 16–20- and
24–32-h groups (E); and 40–44- and 44–48-h groups (F); MLP classification hyperplane plots for second-level temporal division for 4-, 8-, and 12-h groups (G)
(blue, red, white areas); 16–20- and 24–32-h groups (H) (blue and red areas); and 40–44- and 44–48-h groups (I) (blue and red areas); round dots represent
training samples; triangles represent validation samples.

tandem model was more suitable for wound age estimation
than single models.

Discussion

Estimating the amount of time elapsed since injury has
been a goal in traditional forensic medicine over the past
decades. After extensive research [4, 9, 10], forensic scholars
have agreed that multiple biomarkers should be used to
estimate the time since injury [22]. This agreement has
received much attention because the reduction of errors is
important. However, the identification of good biomarkers
for the screening and analysis of relevant data for inferring
time elapsed from injury remain challenging. Metabolomics,
the high-throughput analysis of small molecules in biological
materials, can reveal biologically relevant perturbations in
metabolite profiles that result from diseases [23–25], and the

filtering of biomarkers at the metabolic level is inherent for
this type of analysis [26]. However, the metabolites reflecting
various wound ages remain unknown. In the present study,
metabolic biomarkers significantly different from the control
group were first screened, and a panel of 43 metabolites found
in contused skeletal muscle was identified.

Changes after skeletal muscle injury involve the progress
of inflammation, namely, increases in vascular permeability,
neutrophil exudation, and tissue regeneration and repair
[8]. When reviewing the literature, we found that several
of the 43 metabolites identified in this article are involved
in the injury repair process. For example, prostaglandin
E1 has been reported to regulate blood flow, vascular
permeability, and neutrophil migration as a chemokine [27],
and 13S-hydroxyoctadecadienoic acid regulates intercel-
lular adhesion as inflammation progresses [28]. Notably,
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Figure 6. Workflow of internal validation (A) and external validation (B) of the MLP–MLP tandem prediction model; samples from different groups are
denoted with distinct colours, and points within red boxes represent misjudged samples.

the changes in prostaglandin E1, 15-HETE, 18-HETE,
13S-hydroxyoctadecadienoic acid, and medroxyprogesterone
exhibited similar trends, which is in agreement with the
research of Markworth et al. [27]. The above results indicated
that the metabolites identified in the present study are highly
correlated with skeletal muscle injury and can be applied for
the wound age estimation.

In several preliminary studies of wound age estimation,
multibiomarker analysis was suggested to improve wound
age estimation sensitivity and specificity [1, 22, 29, 30]. In
the previous studies, multibiomarker analysis was used at
morphological level according to the presence or absence
of biomarkers [9, 10], or at the genetic level according to
several biomarkers level changes, such as “up, no change, and
down”, to estimate the wound age [22, 30]. However, the
above data analysis approach forcibly transforms continuous
variables into discrete variables, resulting in the loss of valu-
able information from biomarkers. According to the results of
present study, machine learning models, which may consider
the relationship between different biomarkers, provided a
more efficient method for wound age estimation.

Metabolomics is a high-throughput technology and
inevitably produces a large number of high-dimensional
datasets, which may result in serious overfitting when
machine-learning models are established [31, 32]. In a
previous study, PCA, as an unsupervised dimension reduction
algorithm, was considered in machine-learning modelling
[32]. However, this dimension reduction method is not
capable of handling high-dimensional datasets derived from
multiple time points. Thus, a powerful dimension reduction

method, the PLS-DR algorithm, was employed in this
experiment because a supervised algorithm always achieves
better performance than an unsupervised algorithm [33].

In the present research, the time window for wound age was
narrowed to a minimum of 4 h, which surpassed the result
obtained in our previous study [4]. Firstly, merging groups
and regrouping wound age groups is an effective method to
improve model performance. Moreover, this result is also due
to the application of MLP–MLP tandem machine-learning
models in the present study. As seen from the results in
Figures 3 and 5, although LR, SVM, and RF models were also
established, the MLP algorithm exhibited a relatively robust
performance for all classification tasks. This outcome may
be because the MLP model is a deep-learning model, which
always gives a better and more robust performance compared
to shallow models [34, 35].

Classification and regression models are the two main
approaches for the inference of temporal events in forensics
[36–40]. Regression models are used for estimating time since
death in the previous studies [17, 41], with the result expressed
as a time point plus or minus the root-mean-square error
or standard deviation. Simultaneously, regression models also
group postmortem timepoints into many periods [42], sim-
ilar to classification models for practical application. In the
present study, the wound ages of samples were classified into
4-, 8-, 12-, 16–20-, 24–32-, 36–40-, and 44–48-h groups based
on the pattern recognition results from OPLS-DA, which may
produce results with greater biological significance compared
to regression models based only on the learning performance
from training samples.



FORENSIC SCIENCES RESEARCH 59

Figure 7. The results of comparison between models; (A) the accuracies of internal validation for logistic regression (LR), support vector machine (SVM),
random forest (RF), multilayer perceptron (MLP), and MLP–MLP tandem model; the scatter plots of predicting age and actual wound age in each model;
(B) LR; (C) SVM; (D) RF; (E) MLP; (F) MLP–MLP tandem model; one dot represents one or more sample; the more points that fall in the same position,
the darker the colour; the points on the line are the samples with the correct prediction.

As we all know, to circumvent limitations associated with
human studies (mostly limited to ethic reasons and hetero-
geneity between individuals), animal model studies could be
conducted first. In the present study, whether the result from
rats could be applied to human depends on whether there are
similar metabolic response patterns in the two species. Park
et al. [43] demonstrated that a lot of common endogenous
metabolites were present between primates and rodents, and
many metabolites with low interspecies variability could be
identified for bioeffect monitoring. In the study of deep venous
thrombosis, we also found that humans and rats share a great
number of common metabolites and relative metabolic path-
ways associated with disease [44]. These studies indicated that
metabolites within the same class are unlikely to be species-
specific, which would be useful to translate the findings in
rodent models to human [45, 46].

In the study of sudden cardiac death, the MLP model, which
based on rat metabolomics dataset, achieved an accuracy of
88.23% and a ROC of 0.89 for predicting the acute myocar-
dial ischemia (AMI) type II in autopsy cases of sudden cardiac
death, verifying the feasibility of cross-species metabolomics
[47]. In the present study, there were 40 metabolites and 10
metabolic pathways identified in the injured skeletal muscle
of rat after injury, which were common to human. Therefore,
although there is much difference in biological phenomena
between rats and humans, there would be similar expression
patterns of the endogenous metabolites in the two species.
Cross-species metabolomics can generate associations among
specific metabolites, which would help to translate the current

results from rats to human applications by probing correction
relationships based on these metabolites.

Although combining metabolomics approach and machine-
learning algorithm to establish prediction models has been
demonstrated as a strategy potentially useful for wound age
estimation in present study, the model will be more accu-
rate and reliable if a larger sample size was used, and the
postmortem intervals, temperatures, and humidity would be
performed to refine the prediction models in future research.

Conclusion

A panel of 43 differential metabolites found in contused
skeletal muscle was identified using metabolomic analysis
in the present study. Then, an MLP–MLP tandem machine-
learning model was established based on these metabolites
to determine wound age intervals. The model achieved a
prediction accuracy of 92.6%, which was much higher than
that of the single model. The time window for wound age
estimation had a minimum interval of 4 h and a maximum
interval of 12 h. Results presented in this report revealed
that combination of metabolomics approach and machine-
learning algorithms could be a novel strategy for wound age
estimation in future forensic casework.
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